Class 11 MCQ Chapter 1 Units and Measurement PART - 2


 
  • Which of the following physical quantities has the same dimensions as energy?

    • a) Force
    • b) Power
    • c) Work
    • d) Pressure
    • Answer: c) Work
  • The dimensional formula of momentum is:

    • a) [MLT1][MLT^{-1}]
    • b) [MLT2][MLT^{-2}]
    • c) [ML2T2][ML^2T^{-2}]
    • d) [M2LT2][M^2LT^{-2}]
    • Answer: a) [MLT1][MLT^{-1}]
  • Which of the following pairs have the same dimensions?

    • a) Work and Power
    • b) Momentum and Impulse
    • c) Pressure and Force
    • d) Energy and Force
    • Answer: b) Momentum and Impulse
  • The dimensional formula for pressure is:

    • a) [ML1T2][ML^{-1}T^{-2}]
    • b) [MLT2][MLT^{-2}]
    • c) [M2L2T2][M^2L^{-2}T^{-2}]
    • d) [ML2T2][ML^2T^{-2}]
    • Answer: a) [ML1T2][ML^{-1}T^{-2}]
  • Which of the following quantities has the dimension [ML2T2][ML^2T^{-2}]?

    • a) Work
    • b) Force
    • c) Momentum
    • d) Power
    • Answer: a) Work
  • The dimension of gravitational constant GG is:

    • a) [M1L3T2][M^{-1}L^3T^{-2}]
    • b) [ML3T2][ML^{-3}T^{-2}]
    • c) [M2L2T1][M^2L^{-2}T^{-1}]
    • d) [ML2T2][ML^2T^{-2}]
    • Answer: a) [M1L3T2][M^{-1}L^3T^{-2}]
  • If E=12mv2E = \frac{1}{2}mv^2, the dimensions of EE are:

    • a) [MLT1][MLT^{-1}]
    • b) [ML2T2][ML^2T^{-2}]
    • c) [ML1T2][ML^{-1}T^{-2}]
    • d) [ML2T1][ML^2T^{-1}]
    • Answer: b) [ML2T2][ML^2T^{-2}]
  • The dimensional formula of Planck's constant is:

    • a) [ML2T2][ML^2T^{-2}]
    • b) [ML2T1][ML^2T^{-1}]
    • c) [MLT2][MLT^{-2}]
    • d) [MLT1][MLT^{-1}]
    • Answer: b) [ML2T1][ML^2T^{-1}]
  • Which of the following quantities is dimensionless?

    • a) Refractive index
    • b) Force
    • c) Pressure
    • d) Energy
    • Answer: a) Refractive index
  • The dimension of surface tension is:

    • a) [MLT2][MLT^{-2}]
    • b) [MT2][MT^{-2}]
    • c) [ML0T2][ML^0T^{-2}]
    • d) [ML2T2][ML^2T^{-2}]
    • Answer: c) [ML0T2][ML^0T^{-2}]
  • The dimensions of viscosity are:

    • a) [ML1T1][ML^{-1}T^{-1}]
    • b) [ML1T2][ML^{-1}T^{-2}]
    • c) [ML2T1][ML^{-2}T^{-1}]
    • d) [MLT1][MLT^{-1}]
    • Answer: a) [ML1T1][ML^{-1}T^{-1}]
  • Dimensional analysis can be used to:

    • a) Convert one unit to another
    • b) Check the correctness of a physical equation
    • c) Determine the dimensions of a new physical quantity
    • d) All of the above
    • Answer: d) All of the above
  • Which of the following quantities have the same dimensions as that of angular momentum?

    • a) Work
    • b) Energy
    • c) Planck's constant
    • d) Force
    • Answer: c) Planck's constant
  • The dimensional formula of electric field intensity is:

    • a) [MLT3A1][MLT^{-3}A^{-1}]
    • b) [ML2T2][ML^2T^{-2}]
    • c) [ML2T1A1][ML^2T^{-1}A^{-1}]
    • d) [MLT2A1][MLT^{-2}A^{-1}]
    • Answer: a) [MLT3A1][MLT^{-3}A^{-1}]
  • Dimensional formula of coefficient of viscosity is:

    • a) [ML1T1][ML^{-1}T^{-1}]
    • b) [M1L1T2][M^1L^{-1}T^{-2}]
    • c) [M2L1T2][M^2L^{-1}T^{-2}]
    • d) [M1L2T1][M^1L^{-2}T^{-1}]
    • Answer: a) [ML1T1][ML^{-1}T^{-1}]
  • Comments